Solutions of strong electrolytes.

Peter Košovan
peter.kosovann@natur.cuni.cz

Dept. of Physical and Macromolecular Chemistry

If you find a mistake, kindly report it to the author :-)

http://www.natur.cuni.cz/chemie/fyzchem
Faculty of Science, Charles University in Prague
Summary of perturbation theories (previous lecture)

- Unlike all previous approaches, perturbation theories improve with increasing density
- Excellent agreement at high density and near critical point
- WCA lacks a universal reference state but converges rapidly
- BH possesses a universal reference state but requires higher order terms in β
- Very good for short-ranged realistic potentials
- Similar to previous, they fail for long-ranged potentials like Coulomb
Solutions of strong electrolytes – preliminaries

- All previous results can be generalized to mixtures
- Electrolyte solutions are an important example of a mixture
- Virial expansion for a mixture

\[\frac{p}{k_B T} = \rho_1 + \rho_2 + B_{11}(T)\rho_1^2 + B_{22}(T)\rho_2^2 + B_{12}(T)\rho_1\rho_2 + \cdots \]

\[B_{ij}(T) = -2\pi \int_0^\infty (e^{-\beta u_{ij}} - 1) r^2 dr \]

- Primitive model: hard sphere with a point charge in a continuum

\[u_{12}(r) = \begin{cases} \infty & \text{for } r < (\sigma_1 + \sigma_2)/2 \\ \frac{q_1 q_1}{4\pi \varepsilon r} & \text{for } r > (\sigma_1 + \sigma_2)/2 \end{cases} \]

- Correspondence imperfect gases – solutions of non-electrolytes:

\[\frac{\Pi}{k_B T} = c_2 + \sum_{j=2}^{\infty} B_j^*(\mu_1, T) c_j^2 \]
Overview of electrostatics

Electrostatic potential at an arbitrary point \(\mathbf{r} \):\n
\[
\phi(\mathbf{r}) = \sum_j \frac{q_j^+}{4\pi\epsilon|r - \mathbf{r}_j|} + \sum_k \frac{q_k^-}{4\pi\epsilon|r - \mathbf{r}_k|}
\]

In terms of charge density \(\rho(\mathbf{r}) \):

\[
\phi(\mathbf{r}) = \int_V \frac{\rho^+(\mathbf{r}')}{4\pi\epsilon|r - \mathbf{r}'|} \, d\mathbf{r}' + \int_V \frac{\rho^-(\mathbf{r}')}{4\pi\epsilon|r - \mathbf{r}'|} \, d\mathbf{r}' = \int_V \frac{\rho(\mathbf{r}')}{4\pi\epsilon|r - \mathbf{r}'|} \, d\mathbf{r}'
\]

Poisson’s equation:

\[
\nabla^2 \phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{\epsilon}
\]

Gauss’s law:

\[
\int \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\epsilon}
\]

Charge in the centre of a sphere:

\[
4\pi r^2 E = \frac{q}{\epsilon}
\]

Coulomb’s law:

\[
E = \frac{q}{(4\pi\epsilon r^2)}
\]

Here we use SI units, McQuarrie uses Gauss units.
The Debye-Hückel theory

- Assume solvent as continuum dielectric with permittivity $\epsilon = \epsilon_0 \epsilon_r$
- Neglect molecular structure of the solvent
- Represent ions by the primitive model
- Electrostatic excess free energy (N ion pairs = $2N$ particles):

$$e^{-\beta(A^e)} = e^{-\beta(A - A_0)} = \frac{Z_N}{Z_0^N} = \frac{\iiint e^{-\beta U_N} \, d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}}{\iiint e^{-\beta U_0^0} \, d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}}$$

where

$$U_N = \sum_{i,j>i} \frac{q_i q_j}{4\pi \epsilon |\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i,j>i} u^0(r_{ij})$$

- $u^0(r_{ij})$ is the reference interaction potential (hard sphere)
- Electrostatic self energy of ions omitted – c-independent constant that adds to A
The Debye-Hückel theory

Potential felt by ion j at \mathbf{r}_j:

$$\psi_j(\mathbf{r}_j) = \sum_{i \neq j} \frac{q_i}{4\pi \epsilon |\mathbf{r}_i - \mathbf{r}_j|}$$

Electrostatic part of U_N:

$$U_N^{el} = \sum_j q_j \psi_j(\mathbf{r}_j)$$

Canonical ensemble average of the electrostatic potential:

$$\langle \psi_j \rangle = \frac{\int \cdots \int \psi_j(\mathbf{r}_j) e^{-\beta U_N} d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}}{\int \cdots \int e^{-\beta U_N} d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}}$$

Differentiate $A^{el} = (A - A_0)$ with respect to q_j to show that

$$\left(\frac{\partial A^{el}}{\partial q_j} \right)_{V,T} = -\frac{1}{\beta} \left(\frac{\partial \ln Z_N}{\partial q_j} \right)_{V,T} = -\frac{1}{\beta Z_N} \left(\frac{\partial Z_N}{\partial q_j} \right)_{V,T}$$

Define coupling parameter λ such that $dq_j = q_j d\lambda$, to obtain

$$A^{el} = A - A_0 = \sum_j q_j \int_0^1 \langle \psi_j(\lambda) \rangle d\lambda$$
The Debye-Hückel theory

Potential felt by ion \(j \) at \(\mathbf{r}_j \):

\[
\psi_j(\mathbf{r}_j) = \sum_{i \neq j} \frac{q_i}{4\pi \epsilon |\mathbf{r}_i - \mathbf{r}_j|}
\]

Electrostatic part of \(U_N \):

\[
U_{N}^{\text{el}} = \sum_j q_j \psi_j(\mathbf{r}_j)
\]

Canonical ensemble average of the electrostatic potential:

\[
\langle \psi_j \rangle = \frac{\int \cdots \int \psi_j(\mathbf{r}_j) e^{-\beta U_N} d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}}{\int \cdots \int e^{-\beta U_N} d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}} = \frac{\int \cdots \int \left(\frac{\partial U_N}{\partial q_j} \right) e^{-\beta U_N} d\mathbf{r}_1 \cdots d\mathbf{r}_{2N}}{Z_N}
\]

Differentiate \(A_{N}^{\text{el}} = (A - A_0) \) with respect to \(q_j \) to show that

\[
\left(\frac{\partial A_{N}^{\text{el}}}{\partial q_j} \right)_{V,T} = -\frac{1}{\beta} \left(\frac{\partial \ln Z_N}{\partial q_j} \right)_{V,T} = -\frac{1}{\beta Z_N} \left(\frac{\partial Z_N}{\partial q_j} \right)_{V,T} = \langle \psi_j \rangle, \ j = 1, 2, \ldots, 2N
\]

Define coupling parameter \(\lambda \) such that \(dq_j = q_j \, d\lambda \), to obtain

\[
A_{N}^{\text{el}} = A - A_0 = \sum_j q_j \int_0^1 \langle \psi_j(\lambda) \rangle d\lambda
\]
The Debye-Hückel theory

Consider electrostatic potential at arbitrary point \(\mathbf{r} \)

\[
\psi(\mathbf{r}) = \sum_i \frac{q_i}{4\pi \varepsilon |\mathbf{r} - \mathbf{r}_i|}
\]

Ensemble average \(\psi(\mathbf{r}) \) with particle 1 fixed at \(\mathbf{r}_1 \):

\[
1 \langle \psi(\mathbf{r}, \mathbf{r}_1) \rangle = \frac{\int \cdots \int \psi(\mathbf{r}, \mathbf{r}_1) e^{-\beta U_N} \, d\mathbf{r}_2 \cdots d\mathbf{r}_{2N}}{\int \cdots \int e^{-\beta U_N} \, d\mathbf{r}_2 \cdots d\mathbf{r}_{2N}}
\]

Take its Laplacian and substitute \(\nabla^2 \psi(\mathbf{r}) = -\rho(\mathbf{r})/\varepsilon \) (Poisson’s eq.)

\[
\nabla^2 \left(1 \langle \psi(\mathbf{r}, \mathbf{r}_1) \rangle \right) = \frac{\int \cdots \int \nabla^2 \psi(\mathbf{r}, \mathbf{r}_1) e^{-\beta U_N} \, d\mathbf{r}_2 \cdots d\mathbf{r}_{2N}}{\int \cdots \int e^{-\beta U_N} \, d\mathbf{r}_2 \cdots d\mathbf{r}_{2N}}
\]

\[
= \frac{\int \cdots \int -\frac{1}{\varepsilon} \rho(\mathbf{r}, \mathbf{r}_1) e^{-\beta U_N} \, d\mathbf{r}_2 \cdots d\mathbf{r}_{2N}}{\int \cdots \int e^{-\beta U_N} \, d\mathbf{r}_2 \cdots d\mathbf{r}_{2N}}
\]

\[
= -\frac{1}{\varepsilon} 1 \langle \rho(\mathbf{r}, \mathbf{r}_1) \rangle
\]
The Debye-Hückel theory

Average electrosatic potential with particle 1 fixed at \(r_1 \):

\[
1 \langle \psi(r, r_1) \rangle
\]

Average electrosatic potential due to all other particles except 1:

\[
1 \langle \psi(r) \rangle = 1 \langle \psi(r, r_1) \rangle - \frac{q_1}{4\pi \epsilon |r - r_1|}
\]

Average electrosatic potential acting upon particle 1 fixed at \(r_1 \):

\[
1 \langle \psi(r_1) \rangle = \langle \psi_1 \rangle \text{ for an isotropic fluid}
\]

Set \(r_1 = 0 \) and express charge density, \(\rho(r) \), in terms of \(g(r) \) for \(r > 0 \)†

\[
\nabla^2 \left(1 \langle \psi(r) \rangle \right) = \nabla^2 \left(1 \langle \psi(r, r_1) \rangle \right) = -\frac{1}{\epsilon} 1 \langle \rho(r, r_1) \rangle
\]

\[
= -\frac{1}{\epsilon} \sum_{s=1}^{2} q_s c_s g_{1s}(r, r_1) = -\frac{1}{\epsilon} \sum_{s=1}^{2} q_s c_s e^{-\beta w_{1s}(r)}
\]

†Note: \(\nabla^2 (r - r_1)^{-1} = -\delta^3(r - r_1)/\epsilon \), therefore \(\nabla^2 \langle 1 \langle \psi(r) \rangle \rangle = \nabla^2 \langle \psi(r, r_1) \rangle \)
The Debye-Hückel theory

Recap from the previous slide:

\[
\nabla^2 \left(\frac{1}{\langle \psi(r) \rangle} \right) = -\frac{1}{\epsilon} \sum_{s=1}^{2} q_s c_s e^{-\beta w_{1s}(r)}
\]

Up to this point, everything was exact.

First approximation – set the potential of mean force to \(\frac{1}{\langle \psi(r) \rangle} \)

\[
w_{1s}(r) = q_s \frac{1}{\langle \psi(r) \rangle} \equiv q_s \phi_1(r) \quad \text{for} \ r > a
\]

Use Poisson equation to obtain the **Poisson-Boltzmann** (PB) eq.:

\[
\nabla^2 \phi_1(r) = -\frac{1}{\epsilon} \sum_{s=1}^{2} q_s c_s e^{-\beta q_s \phi_1(r)} \quad \text{for} \ r > a
\]
The Debye-Hückel theory

Second approximation – linearize RHS of the PB equation

\[
\sum_{s=1}^{2} q_s c_s e^{-\beta q_s \phi_1(r)} \approx \sum_{s=1}^{2} q_s c_s - \beta \sum_{s=1}^{2} q_s^2 c_s \phi_1(r)
\]

First term vanishes due to electroneutrality.

Linearized PB equation:

\[
\nabla^2 \phi_1(r) = \kappa^2 \phi_1(r) = \phi_1(r)/\lambda_D^2 \quad \text{for } r > a
\]

where we introduced the **Debye screening length** \(\lambda_D = \kappa^{-1} \):

\[
\kappa^2 = \frac{\beta}{\epsilon} \sum_{s=1}^{2} q_s^2 c_s = \frac{\beta}{2\epsilon} I,
\]

where \(I \) is the ionic strength.

Finally, we note that inside the particle we have

\[
\nabla^2 \phi_1(r) = 0 \quad \text{for } r < a
\]
The Debye-Hückel theory

\(\phi_1(r) \) is spherically symmetric, so we rewrite linearized PB equation:

\[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\phi_1}{dr} \right) = \begin{cases} \kappa^2 \phi_1(r) & \text{for } r > a \\
0 & \text{for } r < a \end{cases}
\]

With boundary conditions (\(a \) is the particle size – hard sphere):

\[\phi_1(r \to \infty) \to 0, \quad \phi_1(r \to a^+) = \phi_1(r \to a^-) \]

Primitive model: \(a > 0 \), restricted primitive model: \(a = 0 \)

Its solution then becomes (see textbook for derivation):

\[
\phi_1(r) = \begin{cases} \frac{q_1}{4\pi \varepsilon r} - \frac{q_1 \kappa}{4\pi \varepsilon (1 + \kappa a)} & \text{for } 0 < r < a \\
\frac{q_1 e^{-\kappa(r-a)}}{4\pi \varepsilon r (1 + \kappa a)} & \text{for } r > a \end{cases}
\]

and finally we obtain \(\langle \psi_j \rangle \) – excess free energy contribution \(A_{el} \)

\[\text{for } r < a \quad \langle \psi_j \rangle = \phi_j(r) - \frac{q_j}{4\pi \varepsilon r} = \frac{q_j \kappa}{4\pi \varepsilon (1 + \kappa a)} \]
Remarks on the Debye-Hückel approximation

• Primitive model: $a > 0$, restricted primitive model: $a = 0$

• For $c \to 0$ DH is an exact limiting law.

• Then $\kappa a \ll 1$, so we obtain:

$$w_{ij}(r) \to \frac{q_i q_j e^{-\kappa r}}{4\pi \epsilon r} \quad \text{for } c \to 0 \quad \text{(Yukawa screened potential)}$$

• As soon as excluded volume (a) becomes important, the assumptions on $w_{ij}(r)$ break down

• Self-consistency conditions:

$$q_j \langle \psi_s \rangle = q_s \langle \psi_j \rangle, \quad \frac{\partial \langle \psi_i \rangle}{\partial q_j} = \frac{\partial \langle \psi_j \rangle}{\partial q_i}$$

• Second condition satisfied by the linearized PB equation

• But it is not satisfied by the non-linearized one
The ionic atmosphere

- Amount of charge within \(r \) from a selected ion

\[
p(r)dr \propto \left\langle \rho(r) \right\rangle 4\pi r^2 dr = -\frac{q_1 \kappa^2 r}{1 + \kappa a} e^{-\kappa(r-a)} dr
\]

- Maximum around \(r \approx \kappa^{-1} \) from the reference ion \(q_1 = -1e \)
Thermodynamic functions from DH theory

\[A - A_0 = \sum_j q_j \int_0^1 \langle \psi_j(\lambda) \rangle d\lambda = \sum_j \frac{q_j^2}{4\pi \epsilon} \int_0^1 \frac{\lambda \kappa(\lambda)}{1 + \kappa(\lambda) a} d\lambda \]

\[\frac{\beta A^{el}}{V} = \frac{\beta A - A_0}{V} = -\frac{\kappa^3}{12\pi} \tau(\kappa a) \approx -\frac{\kappa^3}{12\pi} \]

where

\[\tau(\kappa a) = \frac{3}{\kappa^3 a^3} \left(\ln(1 + \kappa a) - \kappa a + \frac{\kappa^2 a^2}{2} \right) \]

\[\approx 1 - \frac{3}{4} \kappa a + \frac{3}{5} (\kappa a)^2 + \cdots \]

Electrostatic (excess) chemical potential

\[\mu_j^{el} = \left(\frac{\partial A^{el}}{\partial N_j} \right)_{V,T} = \frac{V}{\beta} \left(\frac{\partial}{\partial N_j} \left(\frac{\beta A^{el}}{V} \right) \right)_{V,T} \approx -\frac{\kappa q_j^2}{8\pi \epsilon (1 + \kappa a)} \]
Thermodynamic functions from DH theory

\[\mu_j \xrightarrow{\kappa \to 0} k_B T \ln \Lambda^3 + k_B T \ln c_j - \frac{\kappa q_j^2}{8\pi \epsilon (1 + \kappa a)} \]

\[\ln \gamma_j \xrightarrow{\kappa \to 0} -\frac{\kappa q_j^2}{8\pi k_B T \epsilon (1 + \kappa a)}, \quad \ln \gamma_\pm \xrightarrow{\kappa \to 0} -|q+q-| \frac{\kappa}{8\pi k_B T \epsilon} \]

\[G^{\text{el}} = \sum_j N_j \mu_j^{\text{el}}, \quad \frac{\beta G^{\text{el}}}{V} = \sum_j N_j \mu_j^{\text{el}} = -\frac{\kappa^3}{8\pi (1 + \kappa a)} \]

\[\frac{\beta G^{\text{el}}}{V} = \frac{\beta A^{\text{el}}}{V} + \beta p^{\text{el}} \]

\[\beta p^{\text{el}} = -\frac{\kappa^3}{24\pi} \left(\frac{3}{1 + \kappa a} - 2\tau(\kappa a) \right) \xrightarrow{\kappa \to 0} -\frac{\kappa^3}{24\pi} \]

\[\frac{p}{k_B T} \xrightarrow{\kappa \to 0} c_1 + c_2 - \frac{\kappa^3}{24\pi}, \quad \phi = \frac{p}{k_B T(c_1 + c_2)} \xrightarrow{\kappa \to 0} 1 - \frac{\kappa^3}{24\pi (c_1 + c_2)} \]
Comparison with experiment and simulation

Extended Debye Hückel

Experiment (NaCl)

Simulation model

\[\mu_{\text{ex}} [k_B T] \]

\[c_s [\text{mol/L}] \]
Advanced statmech. theories of ionic solutions

- Analogue of the virial expansion (1950s)

- Generalization of integral equations (1960s)

\[w(r) = \frac{1}{r} - \frac{\kappa^2}{4\pi} \int_{|r-r'|>a} \frac{w(|r-r'|)}{|r'|} \, dr' \]

- Perturbation approaches (1970s)

- All compare with experiment much better than DH

- DH can be obtained as a specific truncation of the virial expansion or closure of the integral equations